?。?)Black—Scholes公式
(2)二項式定價方法
?。?)風險中性定價方法
(4)鞅定價方法等
期權定價模型與無套利定價
期權定價模型基于對沖證券組合的思想。投資者可建立期權與其標的股票的組合來保證確定報酬。在均衡時,此確定報酬必須得到無風險利率。期權的這一定價思想與無套利定價的思想是一致的。所謂無套利定價就是說任何零投入的投資只能得到零回報,任何非零投入的投資,只能得到與該項投資的風險所對應的平均回報,而不能獲得超額回報(超過與風險相當的報酬的利潤)。從Black-Scholes期權定價模型的推導中,不難看出期權定價本質上就是無套利定價。
B-S期權定價模型(以下簡稱B-S模型)及其假設條件
一)B-S模型有5個重要的假設
1、金融資產收益率服從對數正態分布;
2、在期權有效期內,無風險利率和金融資產收益變量是恒定的;
3、市場無摩擦,即不存在稅收和交易成本;
4、金融資產在期權有效期內無紅利及其它所得(該假設后被放棄);
5、該期權是歐式期權,即在期權到期前不可實施。
二)榮獲諾貝爾經濟學獎的B-S定價公式
C=S•N(D1)-L•E-γT•N(D2)
其中:
D1=1NSL+(γ+σ22)Tσ•T
D2=D1-σ•T
C—期權初始合理價格
L—期權交割價格
S—所交易金融資產現價
T—期權有效期
r—連續復利計無風險利率H
σ2—年度化方差
N()—正態分布變量的累積概率分布函數,在此應當說明兩點:
第一,該模型中無風險利率必須是連續復利形式。一個簡單的或不連續的無風險利率(設為r0)一般是一年復利一次,而r要求利率連續復利。r0必須轉化為r方能代入上式計算。兩者換算關系為:r=LN(1+r0)或r0=Er-1。例如r0=0.06,則r=LN(1+0.06)=0853,即100以583%的連續復利投資第二年將獲106,該結果與直接用r0=0.06計算的答案一致。
第二,期權有效期T的相對數表示,即期權有效天數與一年365天的比值。如果期權有效期為100天,則T=100365=0.274。
相關推薦:
編輯推薦: