所謂復利是指在計算某一計息周期的利息時,其先前周期上所累積的利息要計算利息,即“利生利 ”、“利滾利”的計息方式。
例:數據同上例,按復利計算,則各年利息和本利和如下表所示。
復利計算分析表單位 : 元
使用期 | 年初款額 | 年末利息 | 年末利息年末本利和 | 年末償還 |
1 | 1000 | 10001000×8%=80 | 1080 | 0 |
2 | 1080 | 1080×8%=86.4 | 1166.4 | 0 |
3 | 1166.4 | 1166.4×8%=93.312 | 1259.712 | 0 |
4 | 1259.712 | 1259.712×8%=100.777 | 1360.489 | 1360.489 |
從兩個例子可以|考試大|看出,同一筆借款,在利率和計息周期均相同的情況下,用復利計算出的利息金額比用單利計算出的利息金額多。且本金越大、利率越高、計息周期越多時,兩者差距就越大。
復利計算有間斷復利和連續復利之分。
按期 (年、半年、季、月、周、日) 計算復利的方法稱為間斷復利( 即普通復利 )
按瞬時計算復利的方法稱為連續復利。在實際使用中都采用間斷復利。
(四) 利息和利率在工程經濟活動中的作用
1. 利息和利率是以信用方式動員和籌集資金的動力
2. 利息促進投資者加強經濟核算 , 節約使用資金
3. 利息和利率是宏觀經濟管理的重要杠桿
4. 利息與利率是金融企業經營發展的重要條件
現金流量圖的繪制
lZlOl012 掌握現金流量圖的繪制
一、現金流量的概念
在考察對象整個期間各時點t上實際發生的資金流出或資金流人稱為現金流量
其中:流出系統的資金稱為現金流出,用符號(CO)t表示
流人系統的資金稱為現金流入,用符號(CI)t表示
現金流入與現金流出之差稱為凈現金流量,用符號(CI-CO)t表示。
二、現金流量圖的繪制
現金流量的三要素:
?、佻F金流量的大小(現金流量數額)
?、诜较?現金流入或現金流出)
?、圩饔命c(現金流量發生的時間點)
一次支付的終值和現值計算
lZl01013 掌握等值的計算
不同時期、不同數額但其“價值等效”的資金稱為等值,又叫等效值。
一、一次支付的終值和現值計算
一次支付又稱整存整付,是指所分析系統|考試大|的現金流量,論是流人或是流出,分別在各時點上只發生一次,如圖所示。
n 計息的期數
P 現值 ( 即現在的資金價值或本金),資金發生在(或折算為) 某一特定時間序列起點時的價值
F 終值 (即n 期末的資金值或本利和),資金發生在(或折算為) 某一特定時間序列終點的價值