第三章 資金時間價值與證券評價
【重點、難點解析】
一、關于時間價值
資金時間價值是指一定量資金在不同時點上的價值量差額。一般相當于沒有風險、沒有通貨膨脹情況下的社會平均利潤率(純利率),是利潤平均化規律發生作用的結果。
如果通貨膨脹率很低可忽略不計的話,短期國債利率可以用來表示時間價值。
二、時間價值的基本計算及其逆運算
1.幾對互為逆運算的關系
單利終值與單利現值、復利終值與復利現值、普通年金終值與償債基金、普通年金的現值與資本回收額互為逆運算,其系數互為倒數。
遞延年金終值與普通年金終值計算沒有本質差別,不受遞延期影響;永續年金因無到期日,無法計算終值。
【例1】假設以10%的年利率向銀行借款30000元投資某項目,如果期限10年,每年至少應收回( )元
A.6000 B.3000 C.5374 D.4882
【答案】:D。年投資回收額=30000/6.1446=4882
【例2】下列( )是償債基金系數。
【答案】:B。償債基金系數為年金終值系數的倒數。
【例3】某人連續5年每年初存款4000元,如果利率為6%,第五年末本利和為多少?如果改為一次性存款,存款本金金額多少?
F=4000×[F/A(5+1,6%)-1]=23901.2(元)
P=4000×[P/A(5-1,6%)+1]=17860.4(元)
3.先付年金與遞延年金結合求現值。解決問題的關鍵是確定遞延期長短m。
各期現金流后付,m=首此收(付)款時間-1
各期現金流先付,m=首此收(付)款時間-2
【例4】有一項年金,前3年無流入,后5年每年初流入500萬元,假設年利率為10%,其遞延期為( )年。
A.2 B.3 C.4 D.5
【答案】: A。如果前3年年初沒流入,即首次流入發生在第4年初(亦即第三期末),即m=4-2=2。遞延年金現值一般應用于有建設期的項目投資決策。
三、時間價值的應用
1.折現率的推算:普通年金的終值或現值(難點是內插法,掌握計算)
【例5】某公司向銀行借款20萬元,期限5年,雙方商定每年末等額還本付息5萬元,其投資收益率最低應達到多少?
【答案】:20=5×P/A(5,i)
P/A(5,i)=20/4=4.0000
查年金現值系數表,5年期7%對應的4.1002和8%所對應的3.9927將4.0000置中,則: 8%-7%)=7.93%
2.名義利率與實際利率的換算
名義利率i=(1+r/M)m-1
【例6】某人退休時有現金10萬元,擬選擇一項回報比較穩定的投資,希望每個季度能賺回2000元補貼生活。那么,該項投資的實際報酬率應為( )。
A.2% B.8% C.8.24% D.10.04%
【答案】:C。i=(1+2%)4-1=1.0824-1=8.24%